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Abstract—The devastating impacts of air pollution have be-
come more and more evident in recent years. As our measure-
ment technologies improve, we gain better insight into the true
impact of this deadly, yet often ignored, threat. The first step
in reducing the damages caused by this problem is being able
to analyze and predict its patterns. The problem of predicting
air quality and the presence of particulate matter lies in the
nature of the data needed to create an accurate system. The
sheer number of factors affecting air quality mean that previously
proposed approaches often utilize a great many sources of data,
aiming to incorporate images, wind graphs, traffic information,
and more. Yet in truth, most areas outside large metropolises
lack ready access to high-quality data, preventing them from ever
implementing an effective system. We propose a system utilizing
a 1-D deep convolutional neural network to analyze past sensor
readings and predict air pollutant concentrations up to a day in
the future at a 3-hour resolution. We specifically developed this
model for predicting PM2.5 values. The system receives PM2.5
sensor values and discovers temporal pattern in the data, which
will be later used for prediction. By removing the dependency
on complex data inputs, the system becomes accesible and easily
implementable for any region. Despite this simplified approach,
the results are comparable to — and often better than — any
current state-of-the-art predictive systems in this domain.

Index Terms—air pollution prediction, deep CNN-LSTM, con-
volutional neural network, low-cost prediction, atmospheric air
pollution

I. INTRODUCTION

It is impossible to overstate the need for an accurate air

pollution prediction system. Millions die annually to this

pervasive danger, with young children being particularly badly

affected [1] [2]. Air pollution has also taken their toll on local

economies, with California alone suffering a loss of more than

$15 billion a year [3]. In order to mitigate the impacts, many

researchers have attempted to build systems to forecast air

pollution concentrations. However, most of these systems have

largely focused on data-rich environments, where a great many

sources of information can be leveraged [4] [5] [6].

We propose a universal solution; one that can be im-

plemented anywhere with access to ground-based pollutant

sensors. By recasting the gathered sensor data into a modi-

fied pseudo-image, we can utilize a Deep 1-D Convolutional

Neural Network paired with a Long-Short-Term-Memory unit

(LSTM) to forecast pollutant concentrations.

Deep Convolutional Neural Networks belong to a class of

neural networks which utilize weighted filters to transform

a given image into a new representation of the relevant

information. The 1-D variant of this takes a graph of data-

points and interprets it as an image across which the filter is

slid horizontally. At each index of the filter, the existing data is

transformed linearly. By repeating this operation several times,

we can extract a great deal of information from relatively

simple inputs [7].

The output is then fed sequentially to an LSTM. The LSTM

is a special type of neural architecture which is capable of

learning time-based relationships by utilizing a self-feeding

loop in its inner layers — thus retaining information from past

inputs to incorporate into its analysis of the upcoming inputs.

The LSTM is what allows us to accurate forecast upcoming

air pollution levels [8].

II. METHODS

A. Dataset

We utilize historical sensor data gathered across the Port of

LA from 4 major sites [9]. The data includes hourly samples of

6 sensor readings, recording O3, CO, SO2, NO2, PM2.5, and

PM10. Together, these 6 compose the majority of air pollution

in the atmosphere.

We utilize approximately 4 years of data, which we split

into a roughly 75-25 proportion between training and testing.

Thus we get a thorough analysis of the performance of the

system across a year in varying conditions.

B. Model Architecture and Implementation

The predictive model consists of two connected components

— a Convolutional Neural Network, and an LSTM.

Convolutional Neural Networks won their fame in the

domain of image processing, wherein each convolutional filter

is ”slid” accross the image both vertically and horizontally,

thus extracting relevant information from the pixels.

Translating this to the 1-D sensor domain requires us to

create a 1-D analogue of the image.

By stacking multiple layers of convolution in series, we can

generate a transformed sequence of values extracted from the

original sensor inputs. This data will hold far more value for

the LSTM’s predictive stage.
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Fig. 1. An analogue between the RGB-filter 2D image used for traditional
CNNs and the pseudo-image of multi-input sensor data fed to a 1D-CNN
LSTM.

The LSTM is derived from the standard artificial neural

network, wherein a series of neurons apply multiplicative and

additive operations upon input data to generate output. The

LSTM creates a new connection between each neuron’s output

and it’s own input, moderated by a ”forgetting” mechanism to

prevent information overload.

These two systems are linked together so that they can be

trained in series to produce predictions at a 3-hour scale for

the next 24 hours — 8 outputs in all. We choose to train

the network to predict PM2.5, but this approach is easily

extensible to any pollutant.

III. RESULTS AND METHODOLOGY

Our CNN model was a simple 12-filter single-layer system

with a size 5X1 kernel, whose output was flattened and sent

to an LSTM for timeseries-based prediction. The last stage of

processing involved the use of several linear layers for post-

processing and output formatting. The initial layer allows the

model to extract relations across a 5-timestep-span. Since our

data is hourly, the initial phase of processing can only derive

localized patterns at a 5-hour scale. Intra-sensor relations are

transformed from our initial ”6-filter” input composed of 6

sensors to a 12-filter output. Thus the CNN learns localized

patterns in the data and extracts relevant information at a small

scale.

This local information is then fed to the LSTM for a

more ”global” level of spatiotemporal analysis. The LSTM’s

memory cells allow it to put the local patterns in the context of

historical air quality across months, or even years. It’s evident

from our results that this stage of processing is critical — it is

the model’s global pattern recognition that allows it to hold up

in different seasons and weather conditions across the entire

year.

Our model predicted a sliding 24-hour window of pollutant

values at a resolution of 3-hours each. Each frame of output

predictions refers to a 3-hour distance from the previous frame,

with 8 frames in all. For the sake of clarity, we will chart a

comparison between the 8th prediction (24 hour mark) against

the real values at that time. The system is remarkably accurate,

usually with an error in the range of 25% relative to the mean

for that site. The full results are displayed in Table 1.

Fig. 2. 24-hour distanced prediction of PM2.5 concentrations at the Wilm-
ington sensor site.

Fig. 3. 24-hour distanced prediction of PM2.5 concentrations at the San Pedro
sensor site.

Fig. 4. 24-hour distanced prediction of PM2.5 concentrations at the Source-
Dominated sensor site.

The general patterns are similar across sites, which is to

be expected given their relative geographical closeness, all

being within L.A. More striking is the apparent accuracy of

the system, which is capable of forecasting PM2.5 values to

a great degree of accuracy.

Existing systems produce similar results, but require high-

dimensional and complex data input to produce them [10] [11]

[12]. In comparison, these results are produced using low-cost,

readily accessible data.

IV. ERROR ANALYSIS

To evaluate our model’s outputs relative to the labels, we

utilize the Root-Mean-Squared-Error (RMSE) as a measure of
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prediction error. The RMSE is calculated as

RMSE =

√√√√ 1

N

N∑
i=1

(xi)2

where N denotes the number of samples and x denotes

the per-sample error. We analyze this error as a fraction of

the average value of PM2.5 at that site during the testing

period. This normalization is necessary to allow for an accurate

interpretation of the results given their scale.

TABLE I
RMSE BY 3-HOUR INDEX AS A OF THE MEAN CONCENTRATION FOR

RELEVANT SITE.

RMSE Values Across All Sites

San Pedro Site Wilmington Site Source-Dominated Site
Frame 1 19.46% 14.81% 20.01%
Frame 2 19.48% 15.50% 19.96%
Frame 3 21.84% 17.88% 20.51%
Frame 4 22.51% 19.84% 20.87%
Frame 5 23.65% 20.03% 21.08%
Frame 6 24.43% 21.12% 22.01%
Frame 7 24.61% 22.45% 22.54%
Frame 8 25.21% 20.98% 23.50&

V. CONCLUSION

It is evident from our results that this model is capable of

producing highly accurate results, whilst only utilizing low-

dimensionality data. This removes the dependency on possibly

unavailable inputs such as satellite imagery.

Satellite imagery is often unusable due to cloud cover or

other unavoidable problems. By comparison, we utilize a

relatively straightforward and safe source of data with ground-

based sensors. By reverting to the use of a reliable and readily

accessible data source, our system can be used universally in

all locales.

The accuracy of the system demonstrates that the use of this

simpler data form is no compromise. This provokes a deeper

question as to what data is really needed for the purposes of

air pollution prediction. Reliance upon the natural encoding of

environmental information into pollution concentrations does

not seem to hinder our deep learning system, implying that

the necessary information is still present.

This work can be used to allow cities and local governments

to track and analyze the cycles of pollution in their region,

giving them an advance warning on any troubling trends.

VI. FUTURE WORK

It is evident from this study that the 1D-CNN-LSTM

approach is is effective and efficient in discovering and pre-

dicting temporal patterns in the data such as predicting the air

pollution.

The most natural extension of this is to apply a similar

approach to the 2D domain, taking satellite imagery, analyzing

it, and flattening the convolved results to feed to an LSTM.

Additionally, the system as presented can be used in any

locale with ground-based sensors, not just L.A. The flexibility

of the general architecture also means it is possible to predict

any desired pollutant even beyond PM2.5.

The most important implications of this work lie in its

demonstration that deep learning can produce highly accurate

results even given low-dimensionality data in this domain.
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