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ABSTRACT

Air pollution is responsible for the early deaths of 7 mil-
lion people every year in the world. The first and the
most important step in mitigating the air pollution risks
is to understand it, discover the patterns and sources, and
predict it in advance. Real-time air pollution prediction
requires a highly complex model that can solve this spa-
tiotemporal problem in multiple dimensions. Using a com-
bination of spatial predictive models (deep Convolutional
Neural Networks) and temporal predictive models (deep
Long Short-Term Memory), we utilized the Convolutional
LSTM structure that learns correlations between various

points of location and time. We created a sequential encoder-

decoder network that allows for accurate air pollution pre-
diction 10 days in advance using data of 10 days in the
past in the county of Los Angeles on a Nitrogen Dioxide
metric. Through a 5D tensor reformatting of air quality
satellite image data, we provide a prediction for Nitrogen
Dioxide in various areas of Los Angeles over various time
periods.

INTRODUCTION

Air pollution is a silent killer. It is responsible for the early
deaths of 7 million people every year, around 600,000 of
whom are children [1]. It means that every 5 seconds, some-
body around the world dies prematurely from the effects of
air pollution [1]. With the percentage of the global population
living in urban areas projected to increase from 54% in 2015
to 68% in 2050 and in the U.S. up to 89%, the prevention of a
significant increase in air pollution-related loss of life requires
comprehensive mitigation strategies, as well as forecast sys-
tems, to limit and reduce the exposure to harmful urban air

[2][3].

In this paper, we developed predictive models based on ad-
vanced machine learning algorithms to discover and classify
patterns in urban air quality and predict air pollution in differ-
ent areas. In designing the predictive models, we considered
both temporal and spatial patterns in the data. The air quality
data at a specific location is highly correlated to the past data
at that location (temporal correlation) [4]. Also, it is highly
correlated to air quality of adjacent areas because the air pol-
lutants can transmit through the atmosphere from one area to
other areas around it (spatial correlation).

The spatiotemporal machine learning problem has been stud-
ied recently in various contexts including weather-related ap-

plications [5][6][7]. Much of the previous research focuses on
increasing either spatial or temporal correlations, but it is con-
siderably more difficult to introduce an accurate measurement
of both spatial correlation and temporal correlation in a highly
complex model.

The Convolutional Long Short-Term Memory (ConvLSTM)
model is a complex machine learning model used for inputs
that comprise of sets of frames of data, which allows for
unaltered video inputs. The ConvLSTM model is a variation
of the traditional Long Short-Term Memory Network, a time-
series Recurrent Neural Network. Recall the Fully Connected
LSTM (FC-LSTM) structure with characteristic input, forget,
and memory gates:

The key equations for the FC-LSTM are as follows:
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where o denotes the Hadamard product [8].

Notice that in traditional LSTM models, the input vector must
be a one-dimensional vector, where each element of the vector
is fed into different states of the model. Accordingly, the out-
put of the LSTM is also a one dimensional vector parameter-
ized by time. Traditional LSTMs do not account for the spatial
correlations in an environment, and in order to introduce these
spatial correlations, we induced convolution throughout each
of the gates and cell/hidden states.

There are two options to induce convolution in a traditional
ConvLSTM, depending on the sequence of convolution. Ei-
ther the convolution can intermediately occur on the input
tensor before being fed into a traditional FC-LSTM, or the
convolution can accept input tensors as input and perform con-
volution operations when calculating the values of the cell and
hidden states throughout the model. The first option refers to
performing the convolution operation on a multidimensional
input, transforming it into a single dimensional input, prior
to its input in the FC-LSTM structure. Research in this field
denotes the first option as a Convolutional Neural Network -
Long Short Term Memory (CNN-LSTM), as the individual



structures are not changed, and the second option as a Convo-
lutional LSTM (ConvLLSTM), as the traditional LSTM’s cell
operations must be changed, referring to the addition of the
convolution operation in each of the states of the FC-LSTM[9]
[10]. If we allow convolution to replace the Hadamard prod-
ucts in the traditional LSTM structure, we can now input
multidimensional input tensors to the structure and receive a
multidimensional output tensor as output. The key equations
for the ConvLSTM then are defined as
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where * denotes the convolution operation [11].

METHODS

Dataset

Our input data was sourced from the U.S. Geological Sur-
vey’s EarthExplorer database records of the Sentinel 2 satel-
lite, launched on June 23, 2015 [12]. The Sentinel 2 satellite
launched by the European Space Agency in March 2015 im-
ages and records atmospheric and terrain data through 13
spectral bands based on the wavelength of the emitted light.
Sentinel 2 operates along a 290-km orbital swath [13]. Of
these 13 bands, we selected two spectral bands that provided
data on the air pollution in the greater Los Angeles area. The
first band with a 442.7 nm central wavelength measured the
coastal aerosol levels allowing us to view fine particulate mat-
ters including dust, smoke, and general particulate matter. We
also chose a finer spectral band at 945.1 nm central wave-
length to measure specifically the Nitrogen Dioxide levels in
the atmosphere. A sample input is shown in Figure 1.
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Figure 1. Sample Raw Data (Source: USGS EarthExplorer database
of satellite imagery of Los Angeles taken on April 29, 2019 by ESA’s
Sentinel 2 satellite)

The blue structures correspond to strictly Nitrogen Dioxide air
pollution, while the white, cloud-like structures correspond to
general particulate matter.

Data Preprocessing

In order to feed our data into the ConvLSTM model, we trans-
formed 225 GeoTIFF high resolution images into a 5D tensor.
The 225 GeoTIFF images corresponded to 1642 days of data,
with each image being the imaging of the T11SLT 100km x
100km? tile, which is roughly the western 75% of Los Angeles
County. Each of the 225 GeoTIFF images were taken 2 days
apart, the orbit time of the Sentinel 2 satellite.

For our ConvLSTM input, we decided to focus only on the
blue cloud-like structures that imaged Nitrogen Dioxide. To do
so, we first imported our dataset into a JPEG format through
the OpenCV python package. Since the size of the data is
very large, we resampled the data into two batches each with
different lower resolutions.One resampling was a 400px by
400px JPEG image dataset of all 225 images and the other was
a 40px by 40px JPEG image dataset of all 225 images. For
both of the lower resolution resamplings, we applied a mask
that only showed the (0,60,60) to (225,255,255) RGB color
scheme, roughly corresponding to only light blue shades. We
set all other non light blue shades to the (0,0,0) RGB color
scheme or black. An example masked image is shown in
Figure 2.
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Figure 2. Masked Image

In this way, we had created four resamplings of the orignal
image dataset: two masked 40px by 40px datasets and two
masked 400px by 400px datasets. For two of the datasets
with a mask, one 40px by 40px and one 400px by 400px, we
binarized the data, so that all light blue pixels became 1, and
all black pixels became 0. Thus, two of our datasets were
binary arrays. For the remaining two image datasets, we kept
the masked light blue and black color scheme intact. In this
way, we had two datasets of masked color images (RGB) and
two datasets of bit arrays. The color image datasets allowed us
to use a ReLU activation function in the output layer, while the
binary array datasets allowed us to use a sigmoid activation
function.



After resampling the data into various groups based on bi-
nary image, masked image, or image resolution criterion, we
began parsing our 225 image datasets into readable formats
for our ConvLSTM models. In the current form, our image
dataset was in the form of (225,400,400,3) for 400px by 400px
masked images, (225,40,40,3) for 40px by 40px masked im-
ages, (225,400,400,1) for 400px by 400px binary images, and
(225,40,40,1) for 40px by 40px binary images. We then took
all of our datasets and batched every five image frame as one
sample.

An overview of the input data preprocessing is described in
Figure 3.
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Figure 3. Data Preprocessing High-Level Process

Input Data Labelling

An important determinant of the success and practicality of a
time series model is based on the selection of the training and
testing sets from a continuous stream of time-indexed data. In
our model, the label for a training set input is the frame that
directly follows the current frame. In this way, the model is
picking up on the pattern to base a current input image on the
goal of accurately predicting a future image which in this case
means predicting the next 10 days in the future.

In our model, we use five input frames as a data sample to pre-
dict five future frames. In fact, since each frame was separated
by 2 days, we use 10 days of previous satellite imagery data
in order to predict 10 days in the future of satellite imagery

data. For the input labels, we first shifted over all data by
five frames, with the first 5 frames corresponding to the 6th
through 10th frames and the last 5 frames corresponding to the
226th through 230th frame. The 226th through 230th frames
were filled with an averaging of the 30 days prior. Thus, we
encoded sequential samples in training/testing inputs indexed
by time and training/testing labels indexed by time, but did
not overlap the training/testing inputs and the training/testing
labels. We were able to perform a continuous prediction from
the model’s learned patterns. A visual representation of our
labelling is shown in Figure 4:
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Figure 4. Training/Validation Input and Label Creation Process for se-
quential training and testing data without overlapping inputs and labels.



RESULTS

Aerial Satellite Image Model

We developed ConvLSTM models that learned correlations
through spatial and temporal bounds. We predicted 5 frames
in the future from 5 frames in the past, with each frame being 2
days apart. For Figures 5-7, we visualized the prediction of 10
days worth of Nitrogen Dioxide levels through data from the
previous 10 days. Figures 5-7 display the predictions on the
masked 40px by 40px resampled dataset. We have recolored
the figures to accentuate the nature of the prediction, however
its original form remains an RGB image with a light blue and
black color scheme. We used our data to essentially predict
early March 2020’s Nitrogen Dioxide air pollution levels from
late February 2020’s Nitrogen Dioxide pollution data. For
figures 5-7, the left column displays our predictions, while the
right column displays the ground truth.
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Figure 5. Frame 1 Prediction: 2nd day in the future prediction of Nitro-
gen Dioxide air pollution in Los Angeles County from previous 10 days
of data, (a) Prediction, (b) Ground Truth
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Figure 6. Frame 2 Prediction: 10th day in the future prediction of Nitro-
gen Dioxide air pollution in Los Angeles County from previous 10 days
of data, (a) Prediction, (b) Ground Truth
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Figure 7. Last Frame Prediction: 10th day in the future prediction of
Nitrogen Dioxide air pollution in Los Angeles County from previous 10
days of data, (a) Prediction, (b) Ground Truth

As expected, the prediction of the near future is more accurate
than farther in the future. In the context of the problem, this
is because the Nitrogen Dioxide levels of tomorrow are more
correlated to the past week’s Nitrogen Dioxide Levels than
the future week’s Nitrogen Dioxide levels. As we move to
10+ days in the future, the data from the previous 10 days are
no longer strongly correlated to accurately model Nitrogen
Dioxide particulate matter in the greater Los Angeles area.

Error Analysis
We used the Structural Similarity Index Measurement (SSIM)
as a error measure to quantify the model’s accuracy. SSIM is
a very popular tool used for accurate assessment of weather
prediction algorithms due to its ability to judge models on
the similarities in the structure of a prediction [14]. Possible
outputs of the SSIM metric range from O to 1, with 0 being
completely dissimilar and 1 being exactly identical. With true
pixel value p and predicted value p, the SSIM of a single pixel
is

2Uppp+c
(U3 + 15 +c1)op +0F+cr

SSIM(p, p) =

where ¢ and ¢; are constants relating to the relative noise of
an image [15]. For a complete image I, the SSIM is

2Uplp+ci
SSIM(I) =Y — PP —
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[15]. We then ran our SSIM analysis metrics on our binary
input and masked images with our first frame having the most
accurate SSIM value in the two samples or ten frames of data
we predicted. The future frames fell in accuracy by around
10 — 15% due to the ground truth being less correlated to the
previous 10 days of Nitrogen Dioxide levels as compared to
the first few frames of the ground truth.

First Frame Difference
SSIM: 0.77

Predicted Ground Truth

20 20

(a) (b)

Figure 8. First Frame SSIM Measurement: 77% structurally similar
from SSIM error metric of 2nd day in the future prediction of Nitrogen
Dioxide air pollution in Los Angeles County from previous 10 days of
binary input data. (a) Prediction, (b) Ground Truth



Table 1. SSIM Values for First Sample (First 5 Frames): structural simi-
larity percentages of ten days in the future Nitrogen Dioxide predictions
in LA County from previous ten days of data.

Sample 1
SSIM
Frame 1 | 0.77
Frame 2 | 0.70
Frame 3 | 0.63
Frame 4 | 0.56
Frame 5 | 0.51

CONCLUSION

In this paper, we developed predictive models based on ad-
vanced machine learning algorithms to discover and classify
patterns in urban air quality, and specifically predict Nitro-
gen Dioxide in greater Los Angeles area. In designing the
predictive models, we took into account both temporal and
spatial patterns in the data (i.e. the air quality correlation to the
past and future data as well as the correlation to the adjacent
locations).

To discover and learn both temporal and spatial patterns, we
developed a Convolutional Long Short-Term Memory (Con-
vLSTM) model, which is a complex machine learning ap-
proach used for inputs that comprise of sets of frames of
multi-dimensional data. Our model was able to use the Ni-
trogen Dioxide air pollution data in the greater Los Angeles
area of 10 days in order to predict Nitrogen Dioxide pollution
anywhere in Los Angeles 10 days in the future.

This work can be used to alert researchers on the patterns of
movement for Nitrogen Dioxide at any given time period in
the next five years within the greater Los Angeles area.

FUTURE WORK

In the future, we would also like to analyze ground-based sen-
sors with a wide variety of pollutant and atmospheric sensors
including PM2.5, carbon monoxide, ozone, temperature, and
windspeed.

This study could expand to larger areas past Los Angeles
county and include satellite image data and ground-based sen-
sor data in to order include more information when predicting
air pollution.
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