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Summary. Air pollution is one of the world’s leading factors for early
deaths. Every five seconds, someone around the world dies from the
adverse health effects of air pollution. In order to mitigate the effects
of air pollution, we must first understand it, find its patterns and cor-
relations, and predict it in advance. Air pollution prediction requires
highly complex predictive models to solve this spatiotemporal problem.
We use advanced deep learning models including the Graph Convolu-
tional Network (GCN) and Convolutional Long Short-Term Memory
(ConvLSTM) to learn patterns of particulate matter 2.5 (PM 2.5) over
spatial and temporal correlations. We model meteorological features with
a time-series set of multidimensional weighted directed graphs and in-
terpolate dense meteorological graphs using the GCN architecture. We
also use remote-sensing satellite imagery of various atmospheric pollutant
matters. We utilize government maintained ground-based PM2.5 sensor
data along with remote sensing satellite imagery using a ConvLSTM to
predict PM2.5 over the greater Los Angeles county area roughly 10 days
in the future using 10 days of data from the past in 46-hour increments.
Our error results on the PM2.5 predictions over time and along each
sensor location show significant improvement over existing research in
the field utilizing spatiotemporal deep predictive algorithms.
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1 Introduction

Air pollution is a deadly and growing global threat. According to the WHO
(2018), around 92% of the world’s population breathes in polluted air resulting
in 7 million deaths annually. Air pollution is the cause of many adverse health
effects including aggravated cardiovascular and respiratory illness, asthma, and
emphysema. Due to ambient air pollution, the global life span has been shortened
by an average of 1.8 years. In addition to adverse health effects, global air
pollution costs an estimated $5 trillion annually in deaths, healthcare costs, and
lost labor, according to the World Bank (WorldBankl [2016). By 2050, the number
of premature deaths from the exposure to particulate matter (PM), a category of
air pollutants, is expected to more than double worldwide (Marchal et al., |2011]).
Clearly, it is paramount to the safety of the global population to find an effective
and accurate solution to the complex task of mitigating ambient air pollution.

To mitigate the deadly effects of air pollution, we must first be able to
understand it, discover its causes and patterns, and predict it in advance. In this
paper, we apply predictive models including deep neural networks and advanced
machine learning algorithms to learn correlations of spatiotemporal air pollution
in various locations over time and predict for the future. When developing these
state-of-the-art models, we utilized both the spatial and temporal patterns in the
data. Air pollution prediction is inherently a spatiotemporal task: air pollutants
travel in the air and thus affect surrounding areas (spatial correlation); air
pollution concentrations in the future depend on prior concentrations (temporal
correlation).

Air pollution prediction has been a topic of interest for decades, with the
most recent approaches focusing on using the predictive capabilities of deep
neural networks; see the survey paper Bellinger et al.| (2017)) and the references
therein. Current deep learning research in the field seeks to utilize these predictive
models to learn and predict either spatial corrrelations or temporal correlations
in ambient air pollution, but we seldom see models capable of both (Abrahamsen
et al., 2018} |Grover et al., 2015; [Weyn et al.; 2020} [Narejo and Pasero, |2017)). This
paper proposes a model capable of learning the spatial and temporal correlations
of air pollution measured through both remote sensing satellite imagery and
ground based sensors.

In order to do so, we employ a two stage model to combine the learned
representations of the numerous features that we use to predict spatiotemporal
Particulate Matter 2.5 (PM2.5), or particulate matter pollutants with a diam-
eter of less than 2.5 micrometers, in various areas of Los Angeles county over
time. The first stage of our model utilizes the cutting-edge, highly accurate and
effective, Graph Convolutional Network (GCN) to learn and predict patterns in
meteorological and spatial correlations in our ground-based sensor data.

The Graph Convolutional Network is an advanced deep learning architecture
utilizing the properties of graphs. Graphs prove to be a valuable and effective
method of modeling air pollution and weather forecasting, as many of the methods
of collecting and recording the values of these features are in the form of ground-
based sensors. Thus, we can model these sensors as nodes in a weighted directed
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graph to preserve the spatial and distance-based correlations among sensors. The
goal of the Graph Convolutional Network is to learn the feature embeddings
and patterns of nodes and edges in a graph. The GCN learns the features of an
input graph G(V, E) typically expressed with an adjacency matrix A as well as
a feature vector x; for every node i in the graph expressed in a matrix of size
V' x D where V is the number of vertices in the graph and D is the number
of input features for each vertex. The output of the GCN is an V' x F matrix
where F' is the number of output features for each vertex. We can then construct
a deep neural network with an initial layer embedding of h? = x; to perform
convolution neighborhoods of nodes, similar to a Convolutional Neural Network
(CNN). Then, the k-th layer of the neural network’s embedding on vertices h¥ is
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where ¢ is some non-linear activation function, h*~1 is the previous layer embed-

ding of v, Wy is a transformation matrix for self and neighbor embeddings, and
k—1

Y e N(v) ﬁ\;‘w is the average of a neighbor’s previous layer embeddings. The

neural network can be trained efficiently through sparse batch operations on a

layer wise propagation rule
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where I is the identity matrix, A = A+ I, and D is the diagonal node degree
matrix defined as D;; = Zj A; ; (Kipf and Welling| 2016)). In this way the GCN is
able to train the neural network to output a graph with output feature vectors for
each node in the graph. In our implementation, we extend the GCN’s capabilities
further by providing a feature matrix constructed of feature vectors for each edge
in the graph such that the GCN outputs a graph with an output feature matrix
for all nodes and edges in the graph.

Our second stage of the model utilizes a highly accurate and effective deep
learning architecture that learns and predicts for data considering both spatial
and temporal correlations. We utilize the cutting-edge Convolutional Long-Short
Term Memory (ConvLSTM) model architecture to predict spatiotemporal air
pollution using input data of remote-sensing satellite imagery, ground-based
sensor data, and the output of the GCN model. The ConvLSTM model is a
variant of the traditional Long Short-Term Memory (LSTM) model, a time-series
Recurrent Neural Network.

Traditional LSTM models rely on a single dimensional input vector parame-
terized by time. The structure of the LSTM model relies on a time-series of gates
and cells that retain and propagate information from previous cells and time
from the model. For a traditional FC-LSTM (Fully Connected Long Short-Term
Memory), the time parameterized input gates i;, forget gates f;, cell states ¢,
output gates o;, and hidden gates h; are defined as
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where W denotes the weight matrix and o denotes the Hadamard matrix multipli-
cation product (Hochreiter and Schmidhuber] {1997)). In a traditional FC-LSTM,
both the inputs and outputs are 1-dimensional time-series vectors. As a result,
LSTM models do not allow for or utilize spatial correlations in data.

The ConvLSTM model improves upon the FC-LSTM by applying convolution
within the cells and gates of the LSTM to allow for multidimensional video-
like inputs and outputs. This can be achieved rather simply by replacing the
Hadamard products used to define the key equations for the FC-LSTM with the
convolution operation. Note that there are two methods to induce convolution in
a traditional LSTM model. The key equations for the ConvLSTM are

iy = o(Wixy + Wihy—q1 + Wi ci—1 + b;)
fr=0Wpexy +Wihi1 + Wyg i1+ by)

ct = fr®ci—1 + iy * tanh (Wozy + Wiphy_q + be)
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hy = o¢ * tanh (¢;),

where * denotes the convolution operation (Shi et al. [2015). One such method is
described as the ConvLSTM model by using the convolution operation within the
cells and gates of the LSTM, thus directly allowing the inputs and outputs of the
ConvLSTM to be time-series multidimensional data. Another method of inducing
convolution is to perform convolution prior to the LSTM model. By modularizing
the convolution operation and training a Convolutional Neural Network (CNN) to
transform video-like inputs to 1-dimensional time-parameterized output vectors
and using the output in a traditional FC-LSTM, we can achieve a similar level
of learning and prediction based on spatial and temporal correlations. Recent
research into this approach has resulted in the model denoted the Convolutional
Neural Network - Long Short-Term Memory (CNN-LSTM), which, as the name
suggests, utilizes a CNN and LSTM run in succession to utilize and predict
video-like inputs. In this paper, we perform spatiotemporal prediction using the
ConvLSTM model, however there is prior research on alternatively utilizing the
CNN-LSTM model to predict spatiotemporal air pollution (Li et al., [2020a; [Yan
et al, 2021; |[Li et al., 2020b; |Guo et al., 2019).

2 Methodology

In this paper, we propose a two stage model capable of learning spatiotemporal
trends based on remote-sensing satellite imagery of air pollution and data of
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ground-based sensors monitoring air pollutants and meteorological features.
We find that including meteorological features are essential to an accurate
prediction of ambient air pollution. Air pollutants are closely correlated to
meteorological data. Liu et al.| (2020) found that of the 896 government-monitored
air pollution sensors in China, 675 ground-based sensors reported an increase
in carbon monoxide (CO), sulfur dioxide (SO3), nitrogen dioxide (NOs), and
PM2.5 when there was a greater than 10% increase in wind speed at the same
location. In addition to including meteorological data, we find that including a
mixture of both remote-sensing satellite imagery of air pollution and ground-based
sensor air pollution data is necessary for a robust and multifaceted approach to
spatiotemporal air pollution prediction. Remote-sensing satellite imagery provides
information on atmospheric air pollution, while ground-based sensors provide
finer-grained information on air pollution at sea level or within cities. Since the
level of air pollution may vary greatly with respect to altitude, we utilize both
remote-sensing satellite imagery and ground-based sensor data as input to our
model in order to fully understand and predict air pollution. Finally, we find
that data from other air pollutants prove to be beneficial when predicting for a
particular pollutant—in our case PM 2.5. In our dataset, we utilize remote-sensing
satellite imagery of nitrogen dioxide as an input feature when predicting for PM
2.5. Nitrogen dioxide is an adverse air pollutant that is highly correlated to PM
2.5 since a large portion of ambient PM 2.5 is generated through the chemical
reactions of atmospheric nitrogen dioxide (Brook, 2008]).

2.1 Model Architecture

We propose a two stage model to learn and predict spatiotemporal PM 2.5
using meteorological data, ground-based sensor data, and remote sensing satellite
imagery. The goals of our approach include learning spatial correlations of mete-
orological data through the Graph Convolutional Network (GCN) architecture,
utilizing both spatial and temporal correlations in satellite and remote-sensing
data through the ConvLSTM model, and combining the GCN and ConvLSTM
models sequentially.

The first stage of our model utilizes the GCN architecture to learn patterns of
meteorological data through a graph representation. To do so, we first construct
a weighted directed graph representation with the meteorological data described
in 2:3] The goal of the GCN architecture is to interpolate and predict a denser
meteorological graph than the input graph. The task of interpolation is inherently
an effective task to obtain high-level learned feature embeddings. By utilizing a
GOCN for spatial interpolation, we can train a model to predict meteorological
trends in areas not provided by the input graph and thus we can later use
these learned correlations as input to construct a video-like sequence of spatially
continuous predicted meteorological features over time in a geographical area.
For our model, we adapted previous work by Wu et al.| (2020)) on spatiotemporal
kriging with Graph Convolutional Networks to interpolate our nodes and edges
of the meteorological graph. We train the GCN for this interpolation task by
systematically “hiding” a small percentage of node and edge attributes. The
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model then learns to predict for the hidden meteorological feature values at
these nodes and edges based on the disparity between the predicted hidden
meteorological features for a time period against the ground truth meteorological
features. Once the training is complete, the GCN is capable of interpolating a
sparse meteorological graph into a dense graph containing various meteorological
features. The GCN will create one such dense meteorological graph for each

sample parameterized by time.

5 Layer Graph Convolutional Network (GCN)
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An intermediate step in our model is to convert the dense meteorological
graph into an image-based format and concatenate many time-series samples
into a video-like input to the ConvLLSTM model. We utilize a pre-built model
from the StellarGraph Python library to collect the high-level embeddings into
an image-based format for the ConvLSTM model. The StellarGraph package
allows for an unsupervised learning graph representation learning approach to
create a matrix of high-level weights corresponding to the representations of
nodes and edges in the meteorological graph. This set of weights is bounded by
the geographic area we have defined, and as a result, the high level embedding
weight array is calculated for each time-step of the meteorological dataset. By
converting the dense meteorological graphs into spatiotemporal embeddings of
video-like input, we can pass the learned meteorological information as input to
the second stage of our model.

The second stage of our model utilizes the ConvLLSTM architecture to predict
spatiotemporal PM 2.5. The inputs to the ConvLSTM model are all video-like
in shape: all input data is in the form of sets of images or arrays parameterized
over time. The inputs to the ConvLSTM model are the learned meteorological
information outputs from the first stage of the model, the remote-sensing satellite
imagery of air pollutants, and the ground-based sensor data of air pollutants.
The output of the ConvLSTM model is a set of predicted ground-based PM2.5
sensor values around Los Angeles county for multiple days in the future. Figure
displays a visualization of our model architecture.

2.2 Dataset

Our geographical area of interest for prediction is the greater Los Angeles county.
For all data sources in our dataset, we select a region of roughly 2500 mi?, or a 50
mile by 50 mile square region of northwest Los Angeles county. For remote-sensing
satellite imagery in our dataset, we crop the satellite images to fit the geographic
boundaries we defined. For the ground-based sensors, we use the data from all
sensors within the latitude and longitude range of our geographic boundary.
Our temporal area of interest for prediction is the roughly 5 years worth
of data from August 3 2015 to March 19 2020. Each sample of our dataset is
selected to be 46 hours apart from each other. This 46-hour frequency is chosen
based on the longest temporal frequency of all data sources from our model,
and we find that the remote-sensing satellite imagery of nitrogen dioxide in our
area of interest is produced every 46 hours. However, some of the other data
sources including the ground-based sensor data is recorded hourly, but in order
to normalize our dataset, we select a time frequency of 46 hours between samples
for all data sources in our dataset. For each of our data sources, we collect 882
samples corresponding to the 1642 days of data from August 3 2015 to March 19
2020. Note that due to our input data’s temporal frequency being out of daily
cycle, we utilize data from various hours of the day including nighttime and
daytime imagery. In collecting all remote-sensing satellite imagery for our deep
learning model, we carefully consider the physical effects of sunlight and other
temporal confounders on our imaged pollutant data. Thus, we selected data from
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sources where the imagery was ensured to be isolated from the physical effects of
sunlight such that the differences between imagery temporally spaced apart is
uniquely the true differences in pollutant concentrations.
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Fig. 2: METAR ASOS observations of Mesonet database: 24 sensor locations in
Los Angeles, where each sensor records 17 meteorological attributes hourly

Our meteorological data was collected from the Iowa State University Envi-
ronmental Mesonet database (Todey et al., [2002)). The Environmental Mesonet
database collects and records hourly Meteorological Aerodrome (METAR) Re-
ports from Automated Surface Observing Systems (ASOS) located near various
airports and municipal airstrips within the continental United States. ASOS is
primarily used by airlines and air traffic controllers to monitor meteorological
features near and around airport runways. The METAR data provides a full
hourly report of 17 ground-level meteorological features including wind speed,
wind direction, relative humidity, dew point, precipitation, Air Quality Index
(AQI), air pressure, air temperature, etc. The complete list of meteorological
features collected from each site is presented in Table [T} Within our geographic
boundaries, there are 24 ASOS sensors providing full METAR reports. In order
to use these meteorological features in combination with the model and create a
meteorological graph structure, we needed to normalize the various units of these
meteorological features. We did this by calculating each data point’s percentile
value. The percentile value is calculated daily and essentially is the current hour’s
raw value divided by the metric’s maximum daily value. In this way, we normalize
the units so that we retain the important meteorological information, but we do
not need the domain-specific units it is associated with. Figure [2 describes the
geographical area of interest and site locations for the raw meteorological features
we collected. Our ground-based air pollution dataset was collected from the
Southern California Air Resources Board AQMIS2 API. We collect ground-based
sensor data on PM 2.5 which is our prediction target. For the geographic range
we have defined, there are seven PM 2.5 sensors collecting hourly data in the
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Meteorological Feature Unit Stationary /Non-stationary
Air Temperature F Stationary
Dew Point F Stationary
Relative Humidity % Stationary
Heat Index/Wind Chill F Stationary
Wind Direction o Non-Stationary
Wind Speed mph Non-stationary
Altimeter in Stationary
Sea Level Pressure mb Stationary
1 Hour Precipitation in Stationary
Visibility mi Stationary
Wind Gust mph Stationary
AQI N/A Stationary
Peak Wind Gust mph Non-Stationary
Peak Wind Direction o Non-Stationary
Cloud Height Level 1 ft Stationary
Cloud Height Level 2 ft Stationary
Cloud Height Level 3 ft Stationary

Table 1: METAR Meteorological Features for each of the 24 ASOS sites within
Los Angeles county collected from Mesonet

following locations: Lancaster, Santa Clarita, Reseda, Glendora, Los Angeles -
Main St, Long Beach, and Long Beach - Rt 710. These seven PM 2.5 sensors
are the only government-maintained PM 2.5 sensors in the geographical bounds,
however, there are various low-cost individually maintained sensors we chose not
to use for evaluation of our model as we are unable to estimate the uncertainty
error of such sensors.

Our remote-sensing satellite imagery was collected from the NASA Multi-
Angle Implementation of Atmospheric Correction (MATAC) algorithm data source
(Lyapustin and Wangj, [2007). The MATAC algorithm is a preprocessing algorithm
performed on imagery collected by the NASA Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument onboard the NASA Terra and Aqua satellites.
The Terra and Aqua satellites orbit the Earth every 1-2 days and provide imagery
over 36 spectral bands utilizing the MODIS imaging instrument. The MAIAC
algorithm is a highly advanced preprocessing algorithm that converts raw MODIS
imagery to data analytics ready images by retrieving atmospheric aerosol and
air pollutant data from MODIS images, normalizing pixel values, and removing
cloud cover masks. For our model, we use the MATAC MODIS/Terra+Aqua
Daily AOD dataset. AOD or Aerosol Optical Depth is a measure of the direct
amount of sunlight being blocked by atmospheric aerosols and air pollutants.
AOD is perhaps the most comprehensive measure of ambient air pollution and
years of research has shown a strong correlation between AOD readings and PM
2.5 concentrations in both atmospheric and ground-level settings (Li et al.l 2015;
Xiao et all 2017). The MAIAC MODIS AOD dataset we utilize as input to our
model records the blue-band Aerosol Optical Depth at a central wavelength of
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0.47 pm. The raw MATAC MODIS AOD dataset provides a spatial resolution of
1-km /pixel for an area of 1200km by 1200km. However, for our implementation,
we crop the imagery in order to fit our defined geographic bounds.

Figure [3] describes a sample image of NASA MATAC AOD data for our
desired geographic bounds. Note that the figure provides a visualization of the
raw grid-like data of the MATAC AOD imagery, and thus the color values of the
visualization correspond to AOD values, not raw RGB imagery. The brighter
colored pixels in the visualization correspond to higher AOD values. Figure
visualizes the downsampled 40 pixel by 40 pixel MATAC AOD imagery, as
shown in the axes labels along the visualization. We also utilized remote-sensing

Fig. 3: Sample MATAC Satellite AOD Imagery (April 29, 2019 Los Angeles AOD
NASA MATAC Imagery)

0 1000 2000 3000 4000 5000

Fig. 4: Sample Raw Data (Source: USGS EarthExplorer database of satellite
imagery of Los Angeles taken on April 29, 2019 by ESA’s Sentinel 2 satellite)

satellite imagery on nitrogen dioxide (NOs) data from the U.S. Geological
Survey’s (USGS) Earth Explorer database (Faundeen et all 2002). The Earth
Explorer database collects remote-sensing satellite imagery from the European
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Space Agency’s Sentinel-2 satellite. The Sentinel-2 satellite was launched in
March 2015 to image and record terrain and atmospheric data using 13 spectral
bands along a 290-km orbital swath. Our model utilizes data imaging NOy on
one such imaging band with a central wavelength of 945.1 nanometers. Due to the
orbital swath of the Sentinel-2 satellite, the images are collected with a temporal
frequency of 46 hours. Since this is the largest temporal frequency of all our data
sources, we normalized all other data sources and set the temporal frequency of
our total dataset to 46 hours. The nitrogen dioxide in the satellite imagery is
shown as the light blue cloud-like structures. It is important to note that the
Sentinel-2 satellite imagery product of NOy that we use layers the NOy structures
at the top of the image such that the background imagery of the terrain and
ocean will not interfere with the imagery of the NOy structures. The goal of our
data preprocessing for this imagery is then to isolate the NO; layer from the
remainder of the image through pixel masking. Figure [d] provides a sample raw
NO2 imagery visualization collected from Sentinel-2 for our desired geographic
bounds.

For the remote-sensing satellite imagery of the nitrogen dioxide data, we
remove the pixel colors from the image that do not represent the nitrogen dioxide
structures. These pixel values include the pixels for the terrain and ocean, as
including them as input to the model will likely introduce noise, thus reducing
the accuracy of the model. To isolate the light-blue structures that represent the
nitrogen dioxide imagery, we apply a pixel mask to select pixels within the light
blue color range. We set the RGB values of all other non light-blue color values
to (0,0,0).

2.3 Implementation

In order to use the meteorological data with our model architecture, we must
create a weighted directed graph bounded by a geographical grid of our specified
area of interest using the meteorological features. For each time step of the
meteorological dataset, we create a weighted directed graph denoting the nodes
of the graph as static meteorological features pertaining to a sensor location
and the edges denoting non-static meteorological features. We define static
features as scalar measurements of individual meteorological features at a sensor
location. For example, the node attributes for our meteorological graph include
relative humidity, AQI, temperature, air pressure, dew point, heat index, etc.
Edge attributes consist of non-static meteorological features that rely on or
connect multiple sensors. For example, the edge attributes consist of the physical
distance in miles from meteorological sensor locations, the wind speed, and the
wind direction. For each time step, we can create a multidimensional weighted
directed graph containing the spatial and distance-based information of all
meteorological sensors and their recorded features. We then repeat this process
to create these multidimensional weighted directed graphs for each time step of
46 hours in the dataset. Figure |5| describes the weighted directed meteorological
graph construction process. Algorithm [1| describes a step-by-step procedure of
creating these weighted directed meteorological graphs for a single timestep.
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Algorithm 1 Meteorological Graph Construction

Input: Meteorological site features f; € F', where each f; contains site coordinates x;, y;
and a set of site-specific static s; € S and non-static n; € N feature values. Boundary
latitude values latmax, latmin. Boundary longitude values long, .., long, ;..

Initialize 40x40 array grid A.

Initialize weighted directed graph G = (V, E)

for f; € F do

gridl’ gridy = \‘longm::fl?)ngmin J ’ \‘latmay::ll(;tminJ
Algrid,][grid,] = vector of site-specific static values s;
Set Algrid,][grid, | as vertex of G
end for
for f; € F do
for n; € N do
Let start,, start, be the starting coordinates of a weighted directed edge in G
starty, start, = grid,, grid,,
Recover end,, end, from site-specific non-static value n;.
Create weighted directed edge in G starting from vertex located at (starts, starty)
and ending at vertex located at (end,,end,) with weight of |n;|.
end for
end for

Output: Geographically-bound graph feature matrix grid A, Weighted Directed Graph
G

We use the Keras ConvLSTM layer to implement our model. This implemen-
tation requires the input data to be in the form of a 5-dimensional tensor with
dimensions (sample, frame, row, column, filter). For the remote-sensing satellite
imagery in our dataset, we set the row, column, and filter dimensions as the
2D image along with the RGB color values as the filter. We downsample the
satellite imagery into a 40px by 40px image (or 40 row by 40 column array) for
the 5D tensor input. While downsampling, we continue to preserve the geographic
boundaries we have defined.

We train the GCN on the multidimensional weighted directed meteorological
graphs created by hiding a set of the attributes and training for an interpolation
of the hidden values, as described in Section 2.1} We provide a visualization of
this interpolation training process in Figure [f] We visualize two frames of the
interpolation training process on the meteorological graph structure for a single
static attribute of AQIL.

We similarly downsample the output of the GCN-learned meteorological graph
representations into a 40 by 40 pixel image. For the ground-based sensor air
pollution data, we create a grid bounded by our geographical area of interest and
translate the latitude and longitude coordinates to the 40 by 40 grid. For the 33
grid locations that do not contain values, we set to 0, as the data is normalized
and thus the null value of 0 does not affect predictions. We have now constructed
a set of 3D input “images”. However, to construct a 5D tensor, we must bundle
all input frames over time into many samples. We bundle five consecutive frames
into a single sample, where each frame represents information at a time-step of
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Ground Truth AQI node attribute values over 2 frames separated by 46 hours,
(b). shows the GCN Predicted AQI node attribute values over 2 frames separated
by 46 hours.
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Fig. 7: Visualization of various ground-based sensor data and satellite imagery
input filters to our ConvLSTM model

46 hours. Each bundle of frames then represents roughly 10 days or 230 hours of
remote-sensing satellite imagery and ground-based sensor data. Note that the
input data bundles are staggered such that for example the first sample consists
of data from frames 1-5, the second sample consists of data from frames 2-6,
and so on. In this way, we continue to preserve a continuous flow of temporal
correlations among samples. By constructing this 5D tensor, we can transform
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the 880 3D input “images” into a 5D tensor of shape (880, 5, 40, 40, 6). In the
5D tensor, we have a 5D filter where 3 of the dimensions come from the RGB
channels from the remote-sensing satellite imagery of the nitrogen dioxide data,
1 of the dimensions come from the RGB channels of the remote-sensing satellite
imagery of the MATAC MODIS AOD data, 1 of the dimensions comes from
the output of the meteorological GCN, and 1 of the dimensions comes from the
ground-based sensor grid of data values. Figure [7] provides a visualization of these
input filters. Note that because we utilize data of the raw values of PM2.5 and
NO; in £% as well as the AQI values, the ConvLSTM model can derive the raw
concentration of PM2.5 and NOsy, as AQI can be directly calculated through a
linear relationship between the raw value and concentration of an air pollutant.

The output of the ConvLSTM model that uses data of roughly 10 days or a
sample of 5 frames in the past will be the predicted PM 2.5 values for 5 frames
in the future at an interval of 46 hours. In order to evaluate and test our model,
we added a final Dense Keras layer with 7 neurons to give a prediction of only
the 7 PM2.5 sensor locations instead of a spatially continuous prediction of
a 40 by 40 grid over Los Angeles county. We have the capability to produce
spatially continuous predictions of PM2.5 with our current model, but in order
to evaluate against existing ground truth values with little to no measurement
error or uncertainty, we restricted the prediction to sensor locations available in
the Southern California ARB AQMIS2 API.

3 Results

Our model predicts spatiotemporal PM 2.5 in terms of micrograms per cubic
meter (£%5) at seven sensor locations in Los Angeles county every 46 hours at
roughly 10 days in the future intervals using meteorological and air pollution
data of remote-sensing satellite imagery and ground-level sensors from roughly
10 days in the past. We use 880 days of data from August 3 2015 to December 3
2019 as training data and evaluate our prediction on a test dataset of 55 samples
or 105 days of data from December 5 2019 to March 19 2020. Figure [§] provides
a visualization of the distribution and variance of the ground truth PM2.5 values
for each sensor location.

To measure the accuracy of our model, we use the Root Mean Square Error
(RMSE) and Normalized Root Mean Square Error (NRMSE) error. RMSE and
NRMSE is calculated as

RMSE =

RMSE

NRMSE =

where n is the number of observations, § is the predicted value, y is the ground
truth, and 4 is the mean of the test data.
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PM2.5 Data Distribution
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Fig. 8: Data Distribution Plot of PM2.5 Ground Truth Sensors in LA County
during Testing Timeframe (Dec 5 2019 - March 19 2020)

Table |2 displays the prediction RMSE and NRMSE metric results on the first
five frames or roughly 10 days of the test set.

Metric Frame Value
1 (46 hrs ahead) 0.000751
2 (92 hrs ahead) 0.000938

RMSE 3 (138 hrs ahead) 0.001223
4 (184 hrs ahead) 0.001759
5 (230 hrs ahead) 0.002823
1 (46 hrs ahead) 0.0876
2 (92 hrs ahead) 0.1402

NRMSE 3 (138 hrs ahead) 0.1608
4 (184 hrs ahead) 0.2103
5 (230 hrs ahead) 0.2510

Table 2: RMSE and NRMSE Error Values in terms of parts per million (ppm) for
first 5 frames of test set or roughly 10 days of data (December 5 2019 - December
11 2019)

Table |3| displays the prediction RMSE and NRMSE metric results for the
first frame average and fifth frame average for each sensor location throughout
the test set. Note that first frame average error denotes the average error of the
immediate next frame predicted using the previous five frames, while the fifth
frame average error denotes the average error of the fifth of five frames using ten
frames earlier than the fifth frame. Since the first frame predictions use more
recent data to predict, the average first frame error is significantly lower than
the average fifth frame error.
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Average Value

Metric Sensor Location 1st Frame 5th Frame
Lancaster 0.001451 0.003932
Glendora 0.001233 0.003841
Santa Clarita 0.001028 0.003405

RMSE Reseda 0.001115 0.003639
LA - Main St 0.000834 0.003213
Long Beach 0.000750 0.003069
Long Beach - RT 710 0.000901 0.003118
Lancaster 0.1148 0.2866
Glendora 0.1065 0.2705
Santa Clarita 0.0890 0.2519

NRMSE Reseda 0.0907 0.2666
LA - Main St 0.0647 0.2409
Long Beach 0.0541 0.2261
Long Beach - RT 710 0.0702 0.2370

17

Table 3: RMSE and NRMSE error values in terms of parts per million (ppm)
averaged over 5 frame bundles (First Frame Averages and Fifth Frame Averages)
of test set for each sensor location
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Fig. 9: Predicted vs Actual Average Raw PM2.5 Values for each Sensor Location

We provide a visualization of our predicted raw PM2.5 values against the
ground truth for each sensor location in Figure 0]
Our results show significant improvement over current state-of-the-art models
on predicting spatiotemporal PM2.5 air pollution using both remote-sensing
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Fig. 10: Predicted vs Actual RMSE Plot of Raw PM2.5 during the Testing
Timeframe (Dec 5 2019 - March 19 2020) for the Lancaster Sensor
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Fig. 11: Predicted vs Actual RMSE Plot of Raw PM2.5 during the Testing
Timeframe (Dec 5 2019 - March 19 2020) for the Santa Clarita Sensor

satellite imagery and ground-based sensor data. Our first frame prediction’s
percent accuracy is 91.24% which is a 30.1% decrease in hourly error from

(2015)), one of the earliest and highest cited implementations of the
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ConvLLSTM model for PM 2.5 prediction. Moreover, our results show an 85 %
decrease in first frame error compared to our previous models using solely the
ConvLSTM model on Sentinel-2 satellite imagery (Muthukumar et al.; |2020alblc;
Cocom et al., |2020; [Nagrecha et al., [2020; Muthukumar et al.,[2021)). The averaged
RMSE and NRMSE decrease over time with later frames, but this is expected as
the nature of PM2.5 results in concentrations 5 days in the future being more
correlated to 5 days in the past as compared to concentrations 10 days in the
future. We also describe the trends of our predicted PM2.5 values against the
ground truth PM2.5 values and the testing set mean for a single sensor location,
Lancaster, over the test set in Figure Similarly, we provide a visualization for
the Santa Clarita site in Figure Note that in a practical interpretation of our
predictions, we can expect our model to predict trends in Los Angeles PM2.5
values within 46 hours prior or after its true occurance and with a predicted
value £ 3 to 5 £% of the true value.

4 Conclusion

In this paper, we use complex deep learning models to accurately predict spa-
tiotemporal PM2.5 in Los Angeles county over time in 46-hour temporal frequen-
cies using meteorological and air pollution remote-sensing satellite imagery and
ground-based sensor data. In designing our model, we include information on
spatial and temporal correlations as well as meteorological features and related
air pollutant matter data to understand, learn, and predict spatiotemporal PM2.5
air pollution.

We utilized various state-of-the-art predictive models including the Graph
Convolutional Network (GCN) and the Convolutional Long Short-Term Memory
(ConvLSTM). We created a time parameterized set of multidimensional weighted
directed graphs to represent 17 meteorological features in 24 sensor locations
within the greater Los Angeles county area. We then utilized the GCN architecture
to perform convolution on neighborhoods of nodes in order to interpolate dense
meteorological graphs using spatiotemporal kriging. We also used unsupervised
graph representation learning algorithms to create high level embedding “images’
of the dense meteorological graphs and used these high-level embeddings as input
to the ConvLSTM model. In addition to the outputs from the GCN, we also
supplied goverment-monitored ground-based PM2.5 sensor data in grid form,
NASA MODIS MATAC AOD remote-sensing satellite imagery, and ESA Sentinel-
2 nitrogen dioxide remote-sensing satellite imagery as input to the ConvLSTM.
We then bundled the input data into samples consisting of five consecutive frames
of data or roughly 10 days of data. We calculate the RMSE and NRMSE error
values of the predicted PM2.5 values over the first 5 frames as well as the averaged
RMSE and NRMSE error values of the predicted sample for each sensor location.
We find that our results show significant improvement upon current research in
the field utilizing spatiotemporal deep predictive algorithms.

We also find that the results of our model can matched to explain various
real-world events, chemical proceses, and physical processes of ground-based

)
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PM2.5 in Los Angeles county. For example, as described in Figures [0 and
we can see a significant and drastic drop in the predicted PM2.5 values across all
site locations in Los Angeles county around the beginning of March 2020, which
corresponds to the advancement of the worldwide COVID-19 pandemic and the
start of the stay-at-home lockdown issued within Los Angeles county.

This work can be used to inform and assist researchers in various disciplines
on the movement of PM 2.5 along temporal and spatial coordinates.

5 Future Work

In the future, we hope to calculate and account for the data fusion under
uncertainty error for ground-based sensor measurements to ensure the validity of
recorded values. Doing this will allow us include low-cost individually maintained
ground-level sensor data as inputs and predictive targets in order to increase the
spatial resolution of predictions. We hope to include additional meteorological
features such as insolation and solar irradiance as these features are key to
the photochemical production of atmospheric aerosols. We also hope to include
wildfire and smoke data as features to our model, as various studies have found a
significant correlation between wildfires and rising air pollution levels (Liu et al.,
2016; [Reid et al., [2015).

This research can also extend further than Los Angeles county and predict an
array of pollutants including Carbon Monoxide, Ozone, and Sulfur Dioxide. We
hope to utilize community-maintained site monitoring stations in order to collect
fine-grained concentration data of additional air pollutants including NOs, SOs,
CO, and Os.
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